
AD-i44969 SOLUTION OF THE BOLTZMANN TRANSPORT EQUATIONS FOR A i

7 RDA144969 PERMEABLE BASE 
TRNSI..(U) SCIENTIFIC 

RESEARCH
IASSOCIATES INC GLASTONBURY CT R C BUGGELN ET AL

USI FID2 JUL 84 SRA-R84-9i8095-F AFOSR-_TR-84-070 7 F/G ±2/i N



IIL 2
II.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A



RPOSR -TR. A0 7C 7

(R84-920005-F

4 SOLUTION OF THE BOLTZMANN TRANSPORT EQUATIONS FOR A PERMEABLE BASE TRANSISTOR

I by

R.C. Buggeln, J.P. Kreskovsky and H.L. Grubin
Scientific Research Associates, Inc.

P.O. Box 498
Glastonbury, CT 06033

May 1984

Prepared for:

Air Force Office of Scientific Research

Approved for Public Release; Distribution Unlimited

_-_

AU") 3 01984 ~
8 80

84 08G 30 008444



Ur.classified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Availability for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Avaibilior ulii ees

N/ADistribution Unlimited
. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MOI £&T ORGAIZATIPN PEPORT NUMBER(S)

R84-910005-F 7u~ o \ " ,

6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

/ If applicable)

Scientific Research Associate N/A ,

6c. ADDRESS (City. Slate and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

P.O. Box 498
Glastonbury, Connecticut 06033

Ba. NAME OF FUNDING/SPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMEN1-|NSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION SIIIapplicable)

Air Force Office of Scigntific ctOSR/NE -Researcn I

Bc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Building #41 PROGRAM PROJECT TASK WORK UNIT

Boiling AFB, DC 20332 ELEMENT NO. NO. NO. NO.

1i TITLE (Include Security Clamsifieaton) Solution of the
Boltzmann Transport Equation for a Permeable Ba e j . ."

12. PERSONAL AUTHOR(S)

R.C. Buggeln, J.P. Kreskovsky, H.L. Grubin
13.. TYPE OF REPORT 3b. TIM

' 
ERED 984 114. DATE OF REPORT (Yr.. Mo.. Day . PAGE COUNT

Final Report FROM~ 1 TO Iay 311 1984 July 20 35
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reuwrse if necessary and identify by block number)

FIELD GROUP SUB. GR. Boltzmann Transport Equations, Gallium Arsenide Transistor,

IPermeable Base Transistor, Numerical Simulation, Alternating
Direction Implicit. Linearized Mork Tmnlirit

19. ABSTRACT (Continue on reuerse if necessary and identify by block number)

I.A description of a numerical method for solving the Boltzmann transport equations is
presented. This numerical technique is applied to the case of the solution of the
Boltzmann equations for a gallium arsenide permeable base transistor. Calculated
results are presented for two base potentials.

/Q

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASS --I1t

UNCLASSIFIED/UNLIMITED k SAME AS RPT i DTIC USERS 0 Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL.1revl Anra ,,Cod,,e)F SRN
Dr. Gerald Witt I(202)767-4931 AFOSR/NE

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF THIS PAGE



1. Introduction

Considerable interest in the gallium arsenide permeable base-transistor

(PBT) has developed since it was first announced by workers at MIT Lincoln

Laboratories in 1979 [1]. Initial calculations indicated that large values

of the unity-gain-current frequency were possible and could lead to the

development of transistor amplifiers and oscillators that would operate at

frequencies well into the millimeter wave frequency regime. It was also

suggested that LSI/PBT logic circuits with a power-delay product less than

one fJ was possible.

Since 1979, considerable work has been performed mainly at Lincoln

Laboratories [2] and to a lesser extent elsewhere [3]. Workers have pre-

dicted maximum unity-current-gain frequencies as high as 80GHz for silicon as

well as operating frequencies up to 30GHz for a silicon logic inverter [3].

Additionally, the operating characteristics have been shown to be sensitively

dependent on the magnitude of the donor concentrations, its shape, the

structure of the PBT, emitter-collecting spacing, length of the base region,

etc. [4]. When one couples the expectation of superior device performance with

its sensitivity to device parameters, it becomes immediately clear that the

designer of a high frequency PBT is faced with a significant dilemma in

choosing an optimum design. To compound these difficulties, the designer of

the PBT is also faced with the dilemma that the principle design tool,

numerical simulations of the PBT through solution of the semiconductor drift

and diffusion equations (DDE) may not be adequate to the task. The inade-

quacy rests with the fact that present PBT design trends are toward submicron

scales where the impact of velocity overshoot enters. The importance of

velocity overshoot contributions was recognized in one of the first PBT

discussions where attempts to deal with it were confined to modifications of

the field dependent drift velocity [2].

While attempts at incorporating velocity overshoot effects into DDE

simulations have and will continue to be useful, important design informa-

tion is missing. The most critical missing element lies at the core of the

nonequilibrium overshoot phenomena. Namely, that carriers do not attain

equilibrium values of velocity instantaneously. Rather, there are spatial



and temporal lags - features that are absent from the DDE approach. To

overcome these deficiencies newer and more fundamental approaches have been

developed. One approach, simulation of the PBT through solutions to moments

of the Boltzmann transport equation, was successfully implemented by workers

at Scientific Research Associates, inc. (SRA) during a Phase I AFOSR/SBIR

study. The purpose of this report is to summarize the Phase I study.

The report is divided into 6 sections. Section 2 is a summary of the

Phase I technical objectives. Section 3 provides a brief description of the

PBT and the equations used in the Phase I study. Section 4 contains a dis-

cussion of the numerical procedures. Section 5 contains the results of the

study. Section 6 contains the conclusions and recommendations.

2. Phase I - Technical Goals

There were several goals of the Phase I program:

1. The principal objective was to demonstrate the feasibility of

adapting an existing numerical algorithm for solving the moments of the

Boltzmann transport equation (MBTE) to the study of the gallium arsenide

permeable base transistor. The MBTE algorithm incorporates such key high

speed and submicron features as temporal and spatial velocity overshoot.

Code modification was successful and two computer runs were performed.

2. A second objective was to establish an effective program plan for

utilizing the MBTE algorithm in the design and physics analysis of the PBT.

A program plan was regarded as essential because the costs associated with

MBTE utilization are higher than those associated with the simpler and more

limited semiconductor drift and diffusion equations. The program plan

developed is direct and involves two components.

i. The first component involves choosing a specific design goal,

e.g., the design of a 60 and 94GHz PBT amplifier. This component utilizes

drift and diffusion equation algorithms for preliminary selection of

material parameters (e.g., doping variations), and device parameters

(e.g., base length, emitter-collector spacings) to achieve the design

goal.

ii. The second component involves using the reduced set of parameter

variations as initial input to the MBTE algorithm. The MBTE algorithm

is then utilized to simulate the operation of the PBT to provide

either corroboration or modifications of the DDE conclusions.
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3. A third Phase I objective was to enhance an ongoing dialogue with

one of the principle PBT development groups; that at MIT Lincoln Labora-

*i tories. Workers at Lincoln Laboratories have expressed a keen interest in

(1) using the results of the MBTE simulations, (2) supporting part of the

development necessary to bring an existing SRA/DDE algorithm on line for PBT

simulations and (3) utilizing the SRA/DDE algorithm as an adjunct in both

the interpretation of their experimental results and as a guide to future

device design.

3. Permeable Base Transistor and the Governing Moment Equations

3a. PBT Operation

Figure 1 displays a cutaway view of the PBT where one notes the

presence of an array of metallic fingers placed between two regions, labeled

the emitter and collector regions. The individual metallic strips often are

a composite tungsten alloy and create a Schottky barrier at the metal/semi-

conductor interface region. The structure of each region is identified in

Figure 2, displaying an apparent similarity to that of a three-terminal field

effect transistor. Indeed, the operation principles of the PBT and the MESFET

are similar. (In terms of nomenclature, the following association is made

between the two: emitter *-+ source, collector +-+ drain, base +-+ gate.) Apart

from this similarity, there are important design advantages of the PBT over

that of the FET. First, substrate injection problems associated with the MESFET

are nonexistent by design of the PBT Second, surface state depletion in the

source-gate, gate-drain region of the MESFET is nonexistent by design of the

PBT. Third, transport is with the exception of the base region, normal flow,

thereby eliminating high current densities associated with corners of the

planar FET.

The characteristic electrical properties of the PBT are in the zeroth

order case its dc current-voltage characteristics at any combination of

emitter-base collector-base bias level. The current flowing from the emitter

to the collector reflects the channel resistance between the emitter and

base, the base and collector and the enhanced resistance within the base

region.

Under normally off operations the PBT is designed such that the deple-
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tion region surrounding the base penetrates to the bottom of the channel

minimizing the magnitude of current flow between the emitter and collector

regions. Current levels increase by applying forward bias levels to the base

region. Figure 3 is an illustration of the dc current-voltage relation of a

normally off PBT, obtained from Reference 5. As seen from Figure 3, the PBT

begins to turn on at a base threshold voltage of 0.132 volts with a collector

voltage of 0.8 volts [5].

3b. Governing Equations

The operating characteristics of the PBT rests on solutions to the

governing transport equations. The governing equations utilized in this study

are the first three moments of the Boltzmann transport equation. These

equations are derived for two different species of carriers, in this case,

satellite valley and central valley carriers in gallium arsenide. The govern-

ing equations are obtained by taking the collisional invariant moments [6]

of the Boltzmann transport equation, viz., the moments with respect to the

mass, momentum and energy of the two carriers. This yields a set of governing

equations which is similar in form to the equations utilized for two-phase

fluid dynamic flow. The governing equations reflect the conservation laws

of mass, momentum and energy for the two carriers and are often referred to

as the moment of the Boltzmann transport equations.

Using vector notation, the two particle conservation equations can by

expressed as

on V(nV)_ n fI + n2f2 (1)

and

a - nV)+ nf - n 2f2 (2)

where n1 and n2 are the satellite valley and central valley carrier number
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densities respectively while V1 and V2 are the corresponding velocities.

f and f2 are the corresponding scattering integrals for mass conservation

and in general are functions of the corresponding carrier temperature and

momenta [6]. For the purposes of this study, the dependence of all scat-

tering integrals on momenta is neglected. Defining a total or global number

density, n, by

n - n,+ n 2  (3)

and adding Eq. (1) to Eq. (2) yields the equivalent relationship, i.e.,

the global continuity equation

. _ V[n +(n- n,)V 2 ] (4)

Conservation of momentum for the satellite valley carrier can be ex-

pressed as

(n, -- -. (n ) - V9- V' - neE- nPf (5)
at IIII I 11 3

where the momentum, P., and the electric field E, are defined by

P-:- mV (6)

P E zV'~~(7)

where mI is the mass of the satellite valley carrier, e is the electronic

charge and p is the electric potential. The partial pressure, P1 is re-
lated to the satellite valley carrier temperature, Tl, and number density

by the perfect gas relationship

I= nikT (8)

where k is Boltzmann's constant. f3 is the scattering integral for the

15



satellite valley carrier momentum. The term V. 1I represents the stress

forces. In this study, the stress tensor, oi, is approximated by the

Stokes relationship

VJ ~ T_ 2
11( 1+ V - VV) (9)

where P is the viscosity associated with the satellite valley carriers.

Substitution of Eq. (6) and Eq. (7) into Eq. (5) and dividing

by mI  yields the final form of the momentum equation for the satellite

valley carriers, viz.,

VP V- o- nP v
(n I) -V-(nVV )-- M I -- + eVi- nVf 3  (10)

IIII m I  m I  m I

It is observed that Eq. (10) is a vector equation and hence can in

general be considered as I independent equations where Z is the number of

relevant physical dimensions.

An analogous derivation for the central valley carriers plus the identity

of Eq. (3) yields the momentum equation for that species

atL~n) 2  I.nn ~-- . M 1) V24 (11)
2 2 2

where

P 2  (n_ n.)kT 2  (12)

and

~2 -M(-T+V 2 (13)

m2 is the mass of a central valley carrier and P2 is the corresponding viscosity

6
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coefficient. f4 is the scattering integral for central valley carriers and

is assumed to be a function of the central valley carrier temperature, T2, only.

There are various forms in which the satellite valley and central valley

carrier energy equations can be described. This study choses to cast the

energy equations in terms of the satellite and central valley temperatures,

T and T . As with the momentum equation, we start with the satellite

valley carrier energy equation. This equation can be expressed as a balance

between the time rate of change of the total energy (internal plus kinetic

energy), the convection of that energy, the pressure, stress and electrical

field work, the heat conduction and the production and depletion of energy

due to the change of satellite valley carriers to central valley carriers

and vice versa. Mathematically, the above physical statement can be ex-

pressed as

U~j V nV (m--J + U)I-VIV -V-(o -V) + n eVq/vV7
n(m + , V-I I I 2 I I I I I

(14)

+V-(ZVT) --- k[nTf - (n-n)Tf]
I 2 L1 15 1 26j

where U is the specific internal energy of the satellite valley carriers,

kI is the corresponding thermal conductivity and f5 and f6 are the scattering

integrals for the satellite valley energy equation (which are again assumed

to be functions of temperature only). To obtain the static temperature

version of Eq. (14) requires the elimination of the kinetic terms

(VI'V1) of Eq. (14) through the use of the mechanical energy equation.
2

The mechanical energy equation is obtained by dotting the satellite valley

carrier velocity, V, with the satellite valley carrier momentum equation,

applying the vector identities

. . . .. . . . ... V .V.v.
VIV~ III V-P 2 1 2 ' IIV, (15)
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-o - a ,V, ,
t I' Ot ' 2 2 6 t (16)

and the satellite valley particle conservation equation, Eq. (1)

This yields upon multiplying by m1

a v1,v, V vv, -,-
112 v~ 1 1 ~)Jc , 2 V~+~VV

(17)

Equation (17) is next subtracted from Eq. (14) and with the use of the

vector identities

V -,V) = V,.(V-O,) + 0- : VV, (18)

and

I(0)y sVP + P V'4 (19)

the internal energy version of the energy equation is obtained, viz.,

(n, V-,- (n A V -a- :Vv,+ V (WVT,)
I - I ,I I I I

+ NIM1n I3 k[n.Tf (n-nl)Tfr] (20)

2 
2

It is to be noted that the electric field term has disappeared in this form

of the equation; in addition, the term a :VV is often called the dissipation

term. Finally, to obtain the static temperature version of the satellite

valley carrier energy equation, the relationship between internal energy and

static temperature

u -3 kT1 (21)
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and the equation of state, Eq. (8) must be utilized. This yields

upon multiplying by -I the static temperature energy equation.

-TI 2 nV- 2 -2

nT): -VnVT)- nTVV -- a- "VV, + (V T)
5 3 3k 3k (22)

+3V.Vm n 2f-) -f (n-n) f2 ] - nTf,+ (n-n12T2f 6

In an analogous manner the energy equation can be derived for the

central valley carrier. The results are

[n - ndV -j V~ (nTV- I + +-L - (V T2 )
(23)

+3V -Vm (n-nd(2 f4 -f 2 ) + n,f, + nTf 5 - (n - nV 7 (

where f2 and f8 are the scattering integrals for the central vall energy

equation and K 2 is the thermal conductivity.

The partial differential equations, Eqs. (1), (4), (10), (11), (22)

and (23) with equations of state, Eqs. (8) and (12), and the constitutive

relations for the stress tensors, Eqs. (9) and (13), constitute the

governing equations utilized in this study. Eqs. (8), (9), (12) and

(13) can be substituted into the six partial differential equations, thus

relating the dependent variables utilized in this study, viz. nl, n VI , 2 '

T and T In addition, a governing equation must be supplied for the
1 2

electric potential * as this term occurs in both the moment equations.

The electric potential can be related to the total number density through

a Poisson's equation of the form

V2 (n-N o ) (24)

- - h . . . . . . . . . .. . . .



where N is the doping number density (given), C is the permitivity and e0

the electron charge. It is to be noted that the particle conservation

equations, the momenta equations and the energy equations all have time (rate)

terms while the Poisson's equation for electric potential has no such term.

In addition, if we restrict ourselves to two-dimensional problems, it is

seen that the governing partial differential equations, Eq. (1), (4),

(10), (11), (22), (23) and (24) relate nine independent variables for nine

equations (the momentum equations are vector equations and in two dimension

are each two separate, independent equations). This governing system of

equations is coupled and many of the terms are nonlinear. To solve such a

system of equations requires an initial distribution of each of the inde-

pendent variables as well as the various coefficients in the governing

equation, e.g. KI, K2' 1' 2' etc. In addition, boundary conditions are

needed to uniquely define the problem. The boundary conditions will depend

on the problem considered and discussion of that matter will be deferred to

Section 5 (the results section) where boundary conditions are specified

for a sample problem. An equation set as complex as the governing system of

equations (which will subsequently be referred to as the moments of the

Boltzmann transport equations (MBTE) obviously has no closed form of solu-

tion, except for the most trivial of problems. Hence, attempts to solve

thisset of equations with given initial conditions and boundary conditions

was accomplished by means of a numerical procedure.

10



4. Solution of the Governing Equations

The numerical method used in the solution of the governing equations,

which were derived in the previous section, is based on an application of con-

sistently split, linearized, block implicit (LBI) methods as developed by

-Briley and McDonald [7,8]. LBI methods have been highly successful in the

field of computational fluid dynamics (CFD) where they have been applied in

obtaining solutions to a closely related system of governing equations,

the Navier-Stokes equations, [c.f. Ref. 7]. Thus, application of such methods

to solution of the moments of the Boltzmann transport equation can draw on a

vast amount of related experience generated using LBI techniques.

LBI techniques center about the use of a formal linearization procedure

in which systems of coupled nonlinear PDE's in one space dimension are reduced

to a system of linear equations, which upon application of spatial differenc-

ing, may be expressed as a block coupled matrix system. The resulting system

may then be solved efficiently, without iteration, to advance the solution

in time. Steady solutions are obtained as the long-time asymptotic solution.

The benefits of the procedure are retained for multidimensional problems through

application of ADI schemes in their natural extension to block coupled systems.

The ADI procedures reduce the multidimensional system of equations, having

broad-banded matrix structures to systems of one-dimensional equations with

narrow block-banded structures which are solved efficiently using fundamental

block-elimination methods.

Briley and McDonald [7] considered the coupled system of nonlinear,

time-dependent, multidimensional equations given by

aH(4) D (0)+S(SW (25)

at

In Eq. (25), 4 represent the vector of dependent variables =(nl,nlV,2TIT2,

H(p) and S(p) are nonlinear functions of , and D(p) is a general, nonlinear,

multidimensional, partial differential operator. Equation (25) is first time

differenced about tn+,,t

Hn+1 -H = (D +s )+ (I-/3)(Dn+Sn) (26)

16t
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where At= tn+l- tn. The parameter 1 1 for a fully implicit scheme or = 0.5

for the Crank-Nicolson formulation. The implicit level nonlinear operators

H,D and S are then formally linearized using a Taylor series expansion about

the explicit time level. For example

Hn+l= Hn+(Hn(On+_n+ (t2, (27)

Eq. (26) may then be.,expressed at each grid point in the solution domain

as a matrix equation of the form

(A-8t Ln)(4tn + l - n) = At(Dn+S n ) (28)

where

A 1 (29)

and

n {aDn

L ) (- n-)f (30)

As a result, the nonlinear, coupled system of PDE's given by Eq. (25) has

been reduced to a block coupled, linear system of temporal difference equa-

tions (Eq. 28) which, upon spatial differencing, need only be solved once

per time step to obtain a solution. Additionally, since the linearization

error is at worst of the same order as the temporal discritization error, the

linearization is not expected to introduce significant inaccuracies.

Application of Eq. (28) to second order PDE's in one space dimension,

using standard three-point spatial difference approximations requires the

solution of one block tridiagonal system per time step. Such a system can

be solved efficiently using standard block tridiagonal elimination procedures.

However, application of the LBI algorithm given by Eqs. (28-30) to

multidimensional problems results in the loss of this narrow, block banded

12



matrix structure. The discretization of the multidimensional spatial

operator results in a broad-banded metrix structure, which, if solved

by direct or iterative methods, can be extremely inefficient. Such

observations led Briley and McDonald [7,8] to develop consistently

split LBI algorithms for multidimensional problems. The splitting

is accomplished by dividing the multidimensional spatial operator, L, into

one-dimensional operators associated with each coordinate direction.

L = L I + L + L 3  (31)

E5. (28) is then split following the scalar ADI development of

Douglas and Gunn [9].

(A -,GAt') ( )=- )= (Dn + S n  (32a)

(A _'8At L n) (0 fl A (32b)

(A- ,LL) (P) A( n**-fn) (32c)

Here A4 , AO and A* are intermediate solutions of Eqs. (32a-32c).

Again, if three-point operators are used to approximate the spatial

operators, Li, each of Eqs. (32a-32c) will be block-tridiagonal and can

be efficiently solved. The block size and band width are independent of

the number of grid points, hence the computational effort required to

solve the sequence varies linearly with the total number of grid points

regardless of the number of space dimensions considered. For two-dimen-

sional problems, Eq. (32c) is omitted. Elimination of the intermediate

steps in Eqs. (32a-32c) yields

(A-,8AtL')A-|(A-AtL')A-'(A-BAtL') ()n+I-,n)= At(Dn+S n ) (33)



thus

Sn+O N (34)

The development given above presents a brief outline of the LBI

method used in the present investigation. A more detailed development,

as well as in-depth discussion of LBI methods, the linearization procedure

and related topics may be found in the article by Briley and McDonald [7].

Application of LBI procedures to Eqs. (1,4,10,11,22,23 & 24) in

two space dimensions give rise to an A matrix of the form

SI0

x i00 0

X 0
00X 0  (35)

X 0

0 0 0 0 0 0 l

This matrix, due to the absence of a time derivative in Poisson's equation,

is singular, thus Eq. (28) cannot be split following Eq. (32). However,

the partitioning of the A matrix indicated by the dotted lines in Eq. (35)

suggests that if the L matrix (the linearized D-operator) could be simil-

arly partitioned, Poisson's equation could be decoupled from the rest of

the system. The remaining coupled equations could then be solved by a

direct application of the LBI method outlined, followed by the solution of

Poisson's equation, completing a time step. To accomplish the decoupling

of Poisson's equation, it is only necessary to lag the electric field

terms (the potential gradient) which appear in the momentum equations.

While this formally reduces the accuracy of the temporal integration to

14



0(At), it does not adversly effect the stability of the solution algorithm.

A similar procedure has been employed by Kreskovsky and Grubin [10] in

solving the semiconductor drift and diffusion equations. Solution of

Poisson's equation is performed using a scalar ADI procedure with cycled

acceleration parameters [7, 10]. The overall solution algorithm proceeds

as follows:

1) Initial and boundary conditions are specified for all variables

throughout the computational domain.

2) The continuity, momentum and energy equation are solved using

an LBI scheme to advance the carrier densities, velocities and temperatures

from time tn to time tn+At.

3) Poisson's equation is solved, using the carrier densities at

time tn+At, to obtain the advanced time potential distribution.

4) Steps 2 and 3 are repeated until a steady solution is reached or

until the calculation is terminated.

Finally, a few words with regard to the spatial difference approxi-

mation and computational mesh are in order. The difference approximations

used were developed for arbitrary grid spacing in either coordinated

direction. Standard, conservative three-point approximations were used to

assure that the fluxes of momentum, energy and current were rigorously

concerned on the finite difference mesh. The actual mesh distribution can

be generated manually or analytic transformations such as that of Oh

[11], can be used to cluster grid points where higher resolution is required.

15
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5. Results

The preceding analysis was incorporated into a computer program

md the resultant program was used to calculate the steady state solution

of the above governing equations for a gallium arsenide permeable base

transistor at two separate base potentials. The results were then com-

pared with comparable results obtained by solving the drift and diffu-

sion equations as reported by Bozler and Alley [2]. A schematic

of the gallium arsenide device investigated is shown in Fig. 1. n type

emitters and collector layers are used. The base is patterned thin film
+

tungsten while an n substrate is utilized. Electrons flow from the

emitter region through the tungsten grating into the collector region.

The spacing between the tungsten bases is 2000 R and the bases have a

thickness of 200 R. The distance between the emitter and collector is

1.02pm. The tungsten grating forms a Schottky barrier and with the

insulating gallium arsenide controls the flow of the electrons from the

emitter to the collector.

For the purpose of this investigation, an infinite bank of the

tungsten gratings is assumed, hence planes of symmetry exist on 
the lines

passing through the center of each gate and at a point half-way between

each gate. Thus, it is possible to perform the calculation in the compu-

tational domain shown in Fig. 4. The boundary conditions used in these

computations are noted on Fig. 4. On the planes of symmetry (surfaces

3) the symmetry conditions are imposed, viz. that the first derivative

of all variables except normal velocity are zero. The normal velocity

components are set to zero. On surface 1, the emitter contact surface, the

tangential velocity components are assumed to be zero as is the central valley 4

normal velocity component. The second derivative of the satellite valley

normal velocity component is set to zero. Finally, the central valley

number density and the total number density are set to their initial values

(to be subsequently discussed).

On surface 2, the collector contact, all variables are extrapolated,

i.e. second derivations are set to zero, except for the electric potential

16



which is specified at a value V = 1.0 volts. On the surfaces of the em-ce

bedded gate, surfaces 4 and 5, all normal components of velocity are set

to zero (no penetration of the surface) while the first derivative of the

tangential velocity components are set to zero (this yields a slip

tangential velocity on the surfaces). For the temperature the adiabatic

condition is set for both T1 and T2, i.e. the first derivatives of temp-

erature are set to zero. In addition, the first derivatives of the number

densities nI and n are set to zero. The potential on the embedded gate

is set equal to a constant whose value is

'k j#N~ K~~D+B (36)

where 0 BN is the Schottky-barrier height (set to 0.8 volts), Eg, is the
0band gap encrgy, T is the ambient temperature (set to 300 K), ND is

the n-type impurity concentration (set to 1016/cm3), n. is the intrinsic

electron concentration and VBE had values of 0 and 0.3 volts for case I

and II respectively.

Since this study was limited to the steady state solution of the

governing equations transient accuracy was not necessary. Thus, any

initial condition that would allow for the steady state solution to be

obtained was acceptable. The technique used for this study was to initially

set the values of all velocity components equal to zero (quiescent flow)

and to set the values of the satellite valley and central valley tempera-

tures equal to the reference temperature, 300°K. The global number density,

n, was set equal to the reference value and the satellite valley number

density was calculated from the quiescent flow equilibrium values,

viz., by using the definition of total nondimensional number density,

n, of unity and neglecting the temporal and convection terms in the central

valley species equation to obtain

nlf, = n 2f 2

(37)
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Initially, the electric potential was set by solving Poisson's equation

with zero space charge. For these calculations, the values of the

viscosity and thermal conductivity were assumed to be constant and

were assigned values of 6.1034x10
1-  gm and 2.07x0 - 5 joules

sec sec OK
respectively. The effective masses of the central valley and satellite

valley carriers, m1 and m2 were 2.0223x10-
2 8 gm and 6.1034xl. - 2 9 gm

respectively. The permitivity E was chosen as 9.8x10- 13 coulombs The
joule-cm Th

above values were chosen as being representative values for gallium arsenide.

To demonstrate the capability of the computer code associated with the

above analysis, two cases were run corresponding to base potentials of 0.0

and 0.3 volts, henceforth to be referred to as Cases I and II respectively.

For Case I, two separate finite difference grid structures were used to demon-

strate grid independence, i.e., that the converged solutions for two separate

grid structures are essentially identical. For Case II only one grid

structure was used. The strategy for obtaining converged solutions for both

cases was the same: (1) to take a time step as large as possible (i.e. as

large as possible while maintaining a stable solution) to obtain the basic

solution and (2) after the basic solution is obtained, to take successively

smaller time steps to eliminate the remaining errors and thus to sharpen

up the solution. If one looks at the Fourier error analysis of the governing

difference equations, the taking of the large time step eliminate errors

associated with the low frequency components while the taking of small time

steps can be associated with the elimination of errors associated with the

high-frequency components. A physical interpretation is that the taking of

the large time step allows the originally quiescent solution to develop

its basic features. Although the taking of such a large time step will not

give temporal accuracy, this is, of no concern as the steady state converged

solution is the desired end. The use of the smaller time step allows the

finer features of the solution to be obtained. The above can be seen by

observing the right-hand sides of the linearized difference equations. (From

an iterative point of view, it is the right-hand sidesof the set of

linearized difference equations, or as it is sometime refererred to, as the

residual, that we are attempting to drive to zero at which time the steady

state solution can be said to be obtained). Initially, the residuals are

zero, but the imposition of the electric potential results in the movement of

carriers, thus resulting in the growth of the residuals. As the basic
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features of the solution develop, the residuals become larger after which

the residuals will decrease to some non-negligible level. This corresponds

to the elimination of the low frequency error. If one were to continue to

take the same large time steps, the residuals would cease decreasing and in

fact this criterion is used to determine when one stops using the large

time steps. At this point, the time steps are decreased and the residuals

will again start decreasing. This corresponds to the ellimination of the

higher frequency errors and this process is continued until the residuals

reach some arbitrarily set negligible value. Usually, one can observe the solu-

tion and it will be seen that as the time steps are successively decreased,

there is a point at which the solution for all practical purposes ceases to

change. It is at this point, that the solution is deemed to be converged

and the calculation is terminated.

For Case I, two different grid structures were utilized, Case Ia

and Ib respectively. Because of the geometry associated with the permeable

base transistor, a cartisian coordinate system was used. Grid print distri-

butions were specified by the method of Oh [111. This method allows

the grid points to be specified by the use of a sum of error functions. The

advantage is that each error function is centered about some point and

if the appropriate wave lengths and amplitude constants are chosen, the effect

of that particular error function will be limited to a small region. Thus,

one has the ability of concentrating grid points in desired regions while

using fewer grid points in other regions. As used in this study, relatively

large numbers of grid points were used in regions where it was expected

to have large gradients of the dependent variables. This procedure allows
for adequate resolution of these variables in these regions. The first grid

distribution used for Case la had 21 grid points between the axis of sf'mmletrv

and 51 grid points between the emitter and collector plates. The grid distri-

bution utilized for Case Ib used the same 21 grid points between the axis

of symmetry and 63 grid points between the plates. For both cases thu iid

points were concentrated in the region of the base (from the streamwis .r

X-direction perspective) and in the region of the top of the base' (fror tl,.

transverse or Y-direction perspective). For Case II the same grid point

distribution was used as for Case 1b.
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Converged solutions were obtained for Cases la and lb in 350 time

steps. It was noted that during the convergence process, the satellite

valley temperatures became as high as 8 times the reference temperature

of 3000K. However, for the converged solution, the maximum satellite

valley temperature stabilized at approximately 2.5 times the reference

temperature. It was found that the maximum number of time steps taken for

this case were at least an order of magnitude lower than for the comparable

maximum time step allowable when the base did not exist. Examination

of the reason for this was seen to be caused by the existence of the

relatively large ADI splitting error (see for example ref. 7 for a dis-

cussion of ADI splitting error) in the region of the re-entrant corner of

the base. Since similar phenomena have been observed in fluid dynamics

calculations with re-entrant corners, this phenomenon was not unexpected [7 ].

Since the splitting error is proportional to the time step squared,

Atz, the splitting error can usually be controlled by taking a smaller

time step. This was the technique used in the Phase I study. The penalty

to be paid in taking small time steps is the use of more time steps (and

hence more computer time) to obtain a converged solution. For case Ib,

the CPU time (on the University of Minnesota Cray-l computer) is 5.4xi0
- 3

seconds per grid point per time step for nine equations. For case Ib this

corresponds to approximately 2,500 seconds (approximately 42 minutes)

of CPU time.

For the Case II computations, the converged solution for Case Ib was

used as an initial condition. As in case Ib, a converged solution was ob-

tained for Case II in 350 time steps. Again, the splitting error necessi-

tated the taking of a smaller time step than would have been necessary for

the case without the base region. Since the gradients are larger in the re-

gion of the base when the base voltage is increased, this case had corres-

pondingly larger splitting error for the same time step as was used for Case

lb. Thus, an even smaller time step had to be used.

The results of the calculation are displayed as contour plots. For

the case of 0.0 volts on the base contact, the potential contours are shown in

Figure 5. It is noteworthy that the largest potential gradient along the

line of symmetry within the channel occurs immediately downstream from the

base contact. The highest electric field within this region is approximately
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40kV/cm. Within the framework of the drift and diffusion equations this

would tend to fix the mean carrier velocity at l.OxlO 7cm/sec and assure

that well over 90% of the r valley carriers had transferred to the satellite

valleys. The percentage of r valley carriers along the line of symmetry

arising from solutions to the moment equations is displayed in Figure 6.

It is apparent that considerably less transfer has occurred than that asso-

ciated with the drift and diffusion approximation. Indeed, the mean carrier

velocities within the channel are higher than those associated with the

equilibrium field dependent drift velocity, and at certain points exceed

4xl07cm/sec., Fig. 7. The density contours for this case are shown in

Fig. 8 and these contours, as well as those of Fig. 5 are noteworthy

for their similarity to those of Reference 2. It may be stated that

while the carrier and potential contours are similar, the distributions

of carriers between the central and satellite valleys are different

from those using the drift and diffusion equations.

While it is unlikely that a full range of dc current - voltage charac-

teristics will yield similar results using the moment equation algorithms,

and the drift and diffusion algorithms, if they do, the question arises as

to the usefullness of extracting high frequency device performance charac-

teristics from dc characteristics.

The results for the forward bias calculations are shown in Fig.

9-11. For this case, the field distribution downstream from the base

contact is somewhat lower than that of Figs. 5 and 8 and the magnitude

of electron transfer is muted compared to zero applied base contacts. The

distribution of carrier density along the channel is displayed in Fig. 10

and the remarks concerning the comparative results obtained with the drift

and diffusion code are the same as that associated with Fig. 6.

6. Conclusions and Recommendations

The analysis performed under the Phase I, AFOST/SBIR study demonstrates

that a recently developed algorithm can be successfullv aDDlied to ex-

amining the electrical characteristics of the gallium arsenide permeable

base transistor. The study indicates that there is a possibility for the
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dc characteristics as obtained by drift and diffusion equation algorithms

to be similar to those obtained using the moment equation algorithms.

However, the carrier and velocity distribution will be different, and pre-

dictions based on the drift and diffusion algorithms are likely to be of

limited value for high frequency operation.

While the Phase I study demonstrated the feasibility of using the moment

equation algorithm for PBT study, additional algorithm development is re-

quired to improve convergence rates, particularly in the vicinity of the base.
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